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Completing the Temporal Picture*

Zohar Manna A mir Pnueli ;
Stanford University Weizmann Institute of Science?
~and

Weizmann Institute of Science? P

Abstract

The paper presents a relatively complete proof system for proving the validity of temporal
properties of reactive programs. The presented proof system improves on previous temporal
svstems, such as [MP83a] and [MP83b), in that it reduces the validity of program properties
into pure assertional reasoning, not involving additional temporal reasoning. The proof system
is based on the classification of temporal properties according to the Borel hierarchy, providing
an appropriate proof rule for each of the main classes, such as safety, response, and progress
properties. '

1 Introduction

Temporal logic is, by now. one of the acceptable and frequently used approaches to the formal @
specification and verification of concurrent and reactive programs. Even though we have witnessed,{
over the last several years, a great progress in the automatic verification of finite-state programs, sz "
the main tool for establishing that a proposed implementation satisfies its temporal specification is !
still that of deductive verification, using a set of axioms and inference rules. 3

As described in [MPS3a] (see also [MP83b] and [Pnu86]), a proof system that supports the E :
verification of temporal properties over reactive programs has to deal with three types of validity. |

o A- Assertional Validity. This is the validity of non-temporal (state) formulae (also called
assertions) over an arbitrary interpretation.

o T- General Temporal Validity. This is the validity of temporal formulae over arbitrary se
quences of states (models).

e P- Program Validity. This is the validity of temporal formulae over sequences of states which‘*’f
represent computations of the analyzed program. ’

*This research was supported in part by the National Science Foundation undsr grants DCR-3413230 and CCR-:
8812595, by the Defense Advanced Research Projects Agency under contract N00039-34-C-0211, and by the United
States Air Force Office of Scientific Research under contracts AFOSR 87-0149 and 88-0281.

t Department of Computer Science, Stanford University, Stanford, CA 94305

! Department of Applied Mathematics, Weizmann Institute, Rehovot, Israel
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Correspondine to these three tvpes of validity. the proof system may be partitioned into three .
parts. each providing axioms and rules for establishing the validity of the corresponding type. Thisis
essentially the structure of the proof system presented in [MPS3Db). where we rafer to the assertional
part as the domarn part. "

The program part presents some basic proof rules and some derived rules. The derived rules
provide direct support for proving some of the most frequently used temporal properties of programs.

One group of rules establishes the validity of the invariance formulae 0g and O(p — Og). which 4
express the invariance of a state formula g, either throughout the computation. or triggered by the | E
occurrence of p. P

Another group of rules establishes the validity of the eventuality formulae Oq and g(p — ©q), 1 ‘

which express the guarantee that ¢ will eventually happen, either once or following each occurrence *
of p.

s

L

These proof rules are completely satisfactory for establishing this restricted but very prevalent -
set of temporal formulae. The rules derive temporal conclusions from assertional premises. They
have been proven relatively complete, and are the main working tools for verification of the temporal
properties of programs (see, e.g., [OLS2], [MP84], [Kr87)). ;

However, the question which is only partially answered in [MP83a] is how do we prove all the
other properties whose expression in temporal logic does not fall into the restricted class of invari- P
ance and eventuality formulae. The partial solution given there is a general relative completeness
theorem. which shows that the program part is adequate for reducing the validity of a temporal
formula over a given program (P-validity) into a set of valid formulae, which are either assertional |
(A-valid), or temporal but valid over arbitrary sequences of states (T -valid). 3

R Ca

&

We remind the reader that this is the general character of all relative completeness results - .
for program logics such as Hoare logic ([AptS1]) or Dynamic Logic ([Har79]). Since, as soon as E
we consider programs that operate over infinite domains, we lose the possibility of having true i
completeness, the best we can hope for is relative completeness ([Coo7S]). This type of completeness E
ensures an effective reduction from the validity of a program logic statement into the validity of a } - e

finite number of assertional statements. é

Unfortunately, the reduction given in [MP83a] is not only into assertional statements, but also !

into genevally (7-) valid temporal statements. This requires a proof of a general program property ;
to be based not only on assertional reasoning, but also on temporal reasoning, which is less familiar. !
even to a person who is well versed in general logic. This fact has been ccnsidered by some |
researchers a deficiency, and has caused them to shy away from the temporal proof system and look S
for alternative formalisms, in which a complete reduction into assertional statements is guaranteed

([AS89], and also see [MP87]).

In this paper we attempt to remedy the situation by providing a richer proof system for the »
program part, which ensures complete reduction of a general temporal formula (given in a canonical i~
form) into a finite set of assertional statements, whose validity imply the validity of the original E L
temporal formula.

The approach to a complete proof system is based on a classification of temporal propertics §
according to their expression in a canonical form, which applies a set of restricted future modal- |- o
ities to arbitrary past formulae. This classification establishes a hierarchy of temporal propertics L
([MP89]), whose classes can be characterized according Lo three different criteria. We have already s
mentioned their characterization in terms of the syntactic form of their canonical represcutation. { -
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Another characterization is ~emantical, looking at a property as the set of all sequences which have

this property. By this view we can give a topological characterization to the classes in our hierar- -
chy, locating it at the first two levels of the Borel hierarchy. The third chaacterization is in terms |
of structural restrictions on the Streett automaton that recognizes precisely the set of the infinite

sequences which have the property.

In principle, we should provide a separate proof rule for each of the property classes in our
hierarchy. In practice, we concentrate on three particular classes, which have special significance
as expressing most of the interesting program properties, and forming a natural generalization of ;
the two classes of invariance and eventuality properties considered in the previous proof systems. .

These are the classes of: ;

¢ Safety Properties. These are all the properties that can be expressed by a temporal formula
of the form

Oq

for some past formula q.

® Response Properties. These are all the properties that can be expressed by a temporal formula

of the form

O(p — ©q), or alternately, 0O¢

for some past formulae p and q.

e Progress Properties. These are all the properties that can be expressed by a temporal formula@‘;: ‘

of the form
aop — 00¢q

for some past formulae p and q.

We provide complete rules for each of these classes. This provides full coverage for the entire;i"
temporal logic, since by [LPZ85] (see also [ThoS81]), any temporal formula ¥ is equivalent to a\'
conjunction of progress properties. Therefore, to prove the P-validity of ¥, it is sufficient to pm\c :

the P-validity of each of the conjuncts, for which we can use the rule for progress properties.

2 Programs and Computations

The basic computational inodel we use to represent programs is that of a fair transition system. h
this model, a program P consists of the following components.

o V = {u,...,us} - A finite set of state variables. Some of these variables represent dat .
variables, which are explicitly manipulated by the program text. Other variables are mnhof .

variables, which represent, for example, the location of control in each of the processes in ¢‘ _
concurrent program. We assume each variable to be associated with a domain, over which lL»

ranges.

- A set of states. Each state s € T is an interpretation of V', assigning to each variable

y € V a value over its domain, which we denote by s[y].

3
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o 7 - A finiteset of transitions, Eachitransition 7 € T i associated with an assertion p (V. 17)°
called the transition relation. which refers to hoth an unprimed and a primed version of the
state variables. The purpose of the transition relation p- is to express a relation between a -
state s and its successor »'. We use the unprimed version to refer to values in s, and the
primed version to refer to values in &'. For example, the assertion 2’ = & + | states that the
value of z in s’ is greater by 1 than its value in s. {

e O - The precondition. This is an assertion characterizing all the initial states, i.e., states at {
which the computation of the program can start. A state is defined to be initial if it satisfies

O.

o C = {C1,....C,} - A finite set of continual fairness requirements (also called justice or weak
fairness requirements). Each continual fairness requirement C; € C consists of two sets of
transitions C, = (E,,T;), E; € T; C 7T, on which the requirement of continual fairness is
imposed. Intuitively, the continual fairness requirement (£, T;) € C disallows a computation -
in which, beyond a certain point, E, is continually enabled, but no transition of T, is taken
beyond this point.

® R = {Ry,....R:} - A family of recurrent fairness requirements (also called strong fairness: .
requirements). Each recurrent fairness requirement R; € R consists of two sets of transitions 3_’ _
Ry = (E,,T)), E; C T, C T, on which the requirement of recurrent fairness is imposed. ,
Intuitively, the recurrent fairness requirement (Ei,T;) € R disallows a computation in which, g
beyond a certain point, E; is enabled infinitely many times, but no transition of T} is taken ‘
beyond that point. ’

We define the state s’ to be a 7-successor of the state s if

(s,8") = o (V, V"),

where (s.s') is the joint interpretation which interprets z € V as sz}, and interprets ' as s'[z]. |’
Following this definition, we can view the transition 7 as a function 7 : £ v 2%, defined by:

7(s) = {s’ | s’ is a 7-successor of s}.

We say that the transition 7 is enabled on the state s, if 7(s) # ¢. Otherwise, we say that r is
disabled on s. We say that a state s is terminal if all the transitions + € T are disabled on it. The &
enabledness of a transition 7 can be expressed by the formula

En(t): (3V")p,(V, V),

which is true in s iff s has some r-successor.

For a set of transitions E C T, we say that E is enabled on s. denoted by En(FE), if some!
transition 7 € E is enabled on s, and that E is disabled on s if all transitions r € E are disabled
‘on s. . 3

Given a program P for which the above components have been specified, we define a computation %
of P to be afinite or infinite sequence of states o : s, s, s, ..., satisfying the following requirements: i

o [nitiality So is initial, i.e., 5o |= ©.




o Consecution For each 7 = 0.1..... the state S;41 18 A Tosnecessor of the state <. de. -

sS40 € T(sy) for some 7 € T In this casel we say that the transition 7 is

taken at position j in @. For a set of transitions T C T, we sav that T is

taken at position j, if some 7 € T is taken at .
o Termination Either ¢ is infinite, or it ends in a state s; which is terminal.

o Continual Fairness For each (E,,T) € C it is required that, if E; is continually enabled bevond
some point in g, then T, must be taken at infinitely many positions in o.

o Recurrent Fairness For each (E;,T;) € R it is required that, if £, is enabled on infinitely many
states of o, then T; must be taken at infinitely many positions in o.

For a program P, we denote by Comp( P) the set of all computations of P. For simplicity, we will only
consider programs for which 7 is alwavs enabled. Such programs have only infinite computations.

3 Temporal Logic

We assume an underlying assertional language, which contains the predicate calculus, and inter-
preted symbols for expressing the standard operations and relations over some concrete donains.
For the sake of completeness, we require that one of the domains is that of the integers, or another

domain with similar expressive power. We refer to a formula in the assertional language as a state |

formula, or simply as an assertion.

A temporal formula is constructed out of state formulae to which we apply the boolean operators
= and V (the other boolean operators can be defined from these), and the following basic temporal |

operators:

O - Next (© - Previous
U - Until S - Since

A model for a temporal formula p is a finite or infinite sequence of states o : sg, s1,..., where ¥
each state s, provides an interpretation for the variables mentioned in p. For simplicity, we will :

only consider the case of infinite models.

Given a model o, as above, we present an inductive definition for the notion of a temporal

formula p holding at a position j > 0 in o, denoted by (o, j) = p.

¢ TFor a state formula p,
(U,j) '=P = 3 hp

That is, we evaluate p locally, ﬁsing the interpretation given by s;.

* (0i)E-p &= (0i)Fp |
* (0j)EPVe <= (aj)Epor(sj)lg
* (0))FOr <+ (oj+)kp
e (0,j)EPUT <> forsomek2j (0,k) =g,
and for every ¢ such that j <i < k,(0,t)=p
e (0,j))FOp & j>0and(c,j-1)fp
(0.))=pSq <<= forsomek <j (o,k)f=1.

and for every ¢ such that j > > k,(0,i) =p

5
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Additional temporal operators can be defined as follows:

Cp=TlUp - Eventually Gp=T18p - Sometimes in the past
op=-O-p - Henceforth ap=-%o-p - Always in the past
pUg=10pV (pllq) - Unless pSq=apVv (pSq) - Weak Since

Another useful derived operator is the entailment operator, defined by:

p=q << 0Olp—q).

A formula that contains no future operators is called a past formula. A formula that contains
no past operators is called a future formula. Note that a state formula is both a past and a future .
formula. We refer to a past formula [future formula] that is not also a state formula. as a sirict-past

[strict-future, respectively] formula. For a state formula p and a state s such that p holds on s, we
say that s is a p-state.

If (0,0) |= p, we say that p holds on o, and denote it by o |= p. A formula p is called satisfiable

N

if it holds on some model. A formula is called (temporally) valid if it holds on all models.

Two formulae p and q are defined to be equivalent if the formula p = ¢ is valid, i.e., o = piff

o l=gq, forall o.

The notion of validity defined above is the notion of T -validity. Given a program P, we can ©

restrict our attention to the set of models which correspond to computations of P, i.e., Comp(P).
This leads to the notion of P-validity, by which p is P-valid if it holds over all the computations of
P. Similarly, we obtain the notions of P-satisfiability and P-equivalence.

Canonical Form and Classification

By [LPZ85] (see also [ThoS1]), every temporal formula is equivalent to a formula of the form

A(@op: v ong),

=1
for some past formulae p;, g;,i = 1, ey T

Based on this canonical form we can classify the properties expressible by temporal logic ac-
cording to their expressibility by restricted cases of this general formula. We list below the main
classes in this classification, specifying their temporal characterizations. For each class we present
the form of the temporal formulae that express the properties in that class, where the subformulae

P, 4, Pi, §i appearing there are arbitrary past formulae. We refer the reader to [MPS§9] for additionai
properties and characterizations of this hierarchy.

e Safety Properties - Op.
o Termination Properties - Op.
o Intermittence Properties -0pV Oq.
e Multiple Iatermittence Properties - N (Opi V O4)).
o Response Properties - aop.
6
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o Persistrnce Pl‘a)/n rlies - oap.
o Progress Properties - Qop Vv o0g. ', s

o Multiple Progress Properties - AL (Tom vV ooq).
- As stated above, the multiple progress class is the maximal class of properties expressible I
temporal logic. "

4 Rules for Safety

From now on, we fix our attention on a program P, specified by the components (V, 5, 7,0,C. R).

In this section we consider proof rules for establishing the P-validity of a safety formula. As we
recall, a safety formula has the form Op for some past formula p. Let us review first the appropriate
rule for the simpler case that pis a state formula. 9"

For a transition 7, and state formulae p and q, we define the verification condition of T, relative
to p and ¢, to be the implication: '

(or AP) — ¢', denoted by {p}r{q},

where p, is the transition assertion corresponding to 7, and ¢/, the primed version of the assertion :
¢, is ootained from ¢ by replacing each variable occurring in ¢ by its primed version. Since p: holds i
for two states s and s’ iff s’ is a 7-successor of s, and ¢’ states that ¢ holds on s', it is not difficult |

to see that

If the verification condition {p}7{q} is assertionally valid, then every 7-successor of a
p-state is a g-state.

For a set of transitions T C 7, we denote by {p}T{q} the verification coudition of T, relative to p
and ¢, requiring that {p}7{q} holds for every r ¢ T.

The following rule is sound and complete for establishing the P-validity of the invariance formula |
Ogq for a state formula g, over the program P. ' :

INV Il. B¢
I2. P—q
3. {¢}T{v}
Oq

This rule uses an auxiliary assertion ¢ which, by premise I1, holds initially, and by premise I3 is ,
propagated from each state to its successor. This shows that ¢ is an invariant of the program, §
that is, it holds continuously over all computations of P. Since, by 12, the assertion ¢ implies ¢, it
follows that ¢ is also an invariant of the program.

iad |




Generalizing to Past Forinulae

Next.we have to extend the 1NV rule to deal with formulae g, which are past fornvgae, Virst, we
extend the notion of the ptinied version of a formula, to apply also t0 a past formula. Recall that
the intended meaning of a primed formula is to express the value of a formula in the next state. ol
terms of the values of the variables in the next state and in terins of values in the current state,
This is inductively defined as follows:

o For a state formula p(V'), we define as before

(V)Y = p(V).

b
k-
%
3

o For a previous formula
(Or) =p.
This corresponds to our intuition that (Op holds in the next state iff p holds now.

o For a since formula

(»Sq) = ¢ V((pSq) AY).

This corresponds to the intuition that pSq holds in the next state if, either q holds there, 01
pSq holds now and p holds next. :

d

With this definition, we extend the notion of the verification condition {p}7{q} to apply also to;g?, e

past formulae p and ¢, and to mean
(pr Ap)=-¢'.

Note that since we work with temporal formulae, we replaced the previous implication by an en- ‘

tailment, because we expect the implication to hold at all positions of the computation, not only* .
at the first one. i

With this extension, the general single rule for esiablishing safety properties is given by

SAFE Sl1. (O A first)=>¢p
S52. p=¢
S3. {¢}T{v}
Oq

The implications, appearing in the premises I1 and 12 of the NV rule, have been replaced in the saFe

el b‘
rule by the entailments, appearing in the premises S1 and S2. In S1 we also added the conjunct first;

which is an abbreviation for the formula =(Or, characterizing the first position in the computation;
as the only position that has no predecessor. This conjunct is sometimes necessary to ensure that
¥ holds in the first position.




A Minimal General Part

Fxemining the premises ST - S3of the sarz rvle, we observe that they all have the form of tempoyal :
formulae, which are actually other safety formulac. How are there to be proven? It seeme that we
need some additional rules. belonging to the general part. These rules enable us to prove some

temporal formulae that are generally valid, i.e., hold over any sequence of states, unrelated to anv
particular program.

The first rule we consider is the rule of temporal instantiation, which provides a basic tool
for deriving temporal validities from assertional ones. Let g be a siate formula containing the :
propositional symbol p, and let ¥ be a temporal formula. We denote by ql¥/p] the temporal -
formula obtained from ¢ by replacing all occurrences of p by . :

INST q
aq(#/p]

Note, in particular, that if ¢ has the form t — r then the temporal conclusion is an entailment of
the form ¢[/p]=~r[/p]. This rule is often used, without any instantiation, to derive the temporal :-
validity of Og from the assertional validity of ¢q. In these cases, it is sometimes referred to as :
_ generalization. 1

The next rule we consider can be viewed as stating the monotonicity of the temporal operator !
0. For two temporal formulae p and g, we can interpret the entailment p=-gq, i.e., O(p — q), as §
an ordering relation between the formulae, stating that p is smaller (stronger) than q. Indeed, for S |
a sequence ¢, p==¢ claims that the set of positions at which p holds is contained in the set of
positions at which q holds. Monotonicity of the O operator states that if p=-q, and Qp is valid,
then so is Og. :

s-MON Al. p=>¢
A2. op
O¢q

This rule can also be viewed as a temporal version of Modus Fonens, where entailment replaces
implication. In fact, the two preceding rules provide a formal support for many elementary ma‘
nipulations, such as substituting equals for equals, and using any instantiation of propositional
tautologies. We refer to any such manipulation as justified by propositional reasoning. % i

In addition to these very genera! rules, we need in our general part some properties which are »
specific to the initial part of a sequence of states. These will enable us to draw some conclusions®.
from the formula first, as is needed in premise S1 of the SAFE rule.

These are presented by the following two axioms:

e I.PREV: first==-"p

® ISINCE: first=- ((qu) = q)

The 1-PREV axiom states that no previous formula can hold at the initial position of any sequence.
The 1-sINCE axiom states that the formula pSq can hold at the initial position iff q holds there. i

e Riraheets KN THELNIN
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The Completeness of the sare Rule
We Hroceed to consider the applicability of the SAFE rule to the proofs of safety properties. First, ﬁ;
we present an example, illustrating its use.

Example 4.1 Consider the trivial program with a single state variable x, precondition r = 0. and
a single transition 7 whose assertion is given by p, : 2/ = 7 + 1. Observe that this program has a :
single infinite computation, given by (z : 0), (z : 1), (z : 2),... C

We wish to prove for this program the trivial safety property
O((x = 10) — & (z = 5)).

This property claimns that any state in which z = 10 must have been preceded by a state in which -

T = 5. Note that this trivial property would not be true for a program that advances in steps of 2, :

rather than steps of 1.

To prove this property, we identify ¢ as (z = 10) — ©(z = 5) and intend to use the saFE rule.
As the auxiliary formula @, we take (z > 5) = & (z = 3). The rule requires showing the following

three premises:
S1. [(z = 0) A first] == [(z > 5) = &(z = 5)]
52. (2 5) = ©(z =5)) = ((z=10) — &(z = 5))
3. [(a"=z+1) A ((z25) > o(z=5))] = [(z'>5) — (©(z =3) V(' =5)))

In 33 we have already expanded (& (z = 5))' into (©(z = 5) V (¢’ = 5)). All of these apparently
temporal formulae can be established by the INsT rule, usirg the following three valid state formulae, &

and their associated instantiations.

VL (2 =0)Ap) = ((z 2 5) — r)
with the replacement of (first, ¢ (z = 5)) for the proposition symbols (p, ), respectively.
V2. ((x 25) = p) = ((z = 10) — p)

with the replacement of & (z = 5) for the proposition symbol p.

V3. [('=2+1) A ((z25) = p)] = (' 2 5) = (pV (' = 5))]

with the replacement cf ©(z = 5) for the proposition symbol P

Theorem 7.2, presented in Section 7, establishes the adequacy of the SAFE rule by stating:

The saFE rule is complete, relative to assertional validity, for proving the P-validity of
any safety property.

The proof of the theorem is based on the construction of a big past invariant which relates the
values of variables in an accessible state (i.e., appearing in some computation of P) to the boolean : 1

values of the temporal sub-formulae of the past formula ¢, whose invariance we wish to establish.

10
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Causality Formulae

Even though, in theory, the completeness theorem above fully settles the question of proving 1he
validity of safety formulae, there is a practical interest in identifying special forms of safety formulae. -
for which a specific proof methodology exists. One of these subclasses contains the pxopemes
expressible by the causality formula

p=-0g ’"
for past formulae p and ¢. The causality formula states that every p-state is necessarily preceded
by a g¢-state.

&

To present a proof rule for causality properties, we define first the inverse verification condition,
denoted by {p}r~!{q} and standing for the entailment 5

(p'r /\P )=>'(I'

The validity of this condition ensures that any r-predecessor of a p-state must be a g-state. The
condition is extended to sets of transitions T C 7 in the usual way. Then, the following rule is*
adequate for proving causality properties.

caus Kl. p=-(pVyq)
K2. (O Afirst)=>-yp
R3. {¢}T-'{vVyq}
p=-904¢

By premise K1, any state satisfying p. either already satisfies g, or satisfies the auxiliary past .
formula ¥. By premise K3, the predecessor of any ¢-state must satisfy ¢ V ¢q. Thus, if we do not ‘
find a ¢ preceding p, ¥ propagates all the way to the initial position. However, this contradicts -
premise K2, according to which the initial position cannot satisfy ¢.

Incremental Proofs

In the previous paragraphs, we have considered how to establish the invariance of some past for-

mulae. Having established some basic invariants of this form, we may want to use them in order to # O

derive more complex properties. For this purpose, we quote again the s-MoN rule, which suggests a
strategy, to which we refer as the incrementality principle. According to this principle, we establish% _
first the validity of a simpler safety property Op. Later, whenever we have to establish the validity:
(over P) of a premise that has the form O, we can instead establish the validity of p=-1. ;

5 Rules for Response

Response properties are those which can be expressed by a formula of the form
p=>Cq, or equivalently o(p — Oq)

for some past formulae p and q. Now that we have learned, in the previous section, how to generallze :
rules having assertional premises into rules with temporal premises involving past formulae, it is’
straightforward to properly adapt the set of rules from [MP83a]. The rules for establishing respons é
properties can be partitioned into single-step rules and erfended rules. We consider each group in’
turn.
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Rules for Single-Step Response

These are the rules that establish properties that depend on the execution of a single heipful
transition (which may be selected out of several candidates) to accomplish the guaranteed response

q- We have three rules in this group, which differ by the type of fairness on which they rely. ;

The first ruie i» unconditior.... of any fairness assumption, and only relies on the fact that as-

long as there are <. bled transitions, some transition will eventually be taken. E
B-RESP Bl. p=-(qVvy)
B2. {¥}7{q}
B3. ¢=-(qV En(T))
p=><q

The rule cousiders three past formulae p,q, and the auxiliary ¥. Premise Bl requires that any
p-state, either already satisfies q, or satisfies . Premise B2 requires that taking any transition from’
a P-state, must lead to a g-state. Premise B3 requires that at least one transition must be enabled

on each -state that does not satisfy q. Clearly such a transition must be taken next, resulting in |
a g-state.

The next single-step rule relies on continual fairness to ensure that eventually a helpful transition, ¢
leading to g, will be taken. It assumes a continual fairness requirement (E,T) € C. :

c-resP Cl. p=>(qV¥)
C2. {»}T{qVvv}
C3. {»}T{q}
C4. 9=-(qV En(E))
p=<3q

Premise C1 ensures, as before, that p entails q or . Premise C2 states that any transition of the ¢

program, either leads from ¢ to q, or preserves ¥. Premise C3 states that any transition in the }

helpful set T leads from ¢ to q. Premise C4 ensures that E is enabled as long as ¥ holds and
q does not occur. It is not difficult to see that if p happens, but is not followed by a ¢, then ¢ £
must hold continuously beyond this point, and no transition of T is taken. llowever, due to C1, £
this means that E is continuously enabled beyond this point, which violates the requirement of
continual fairness represented by (E, T).

The last rule relies on a recurrent fairness requirement (E,T) € R.

R-RESP Rl. p=-(qVv¥)
R2. {¢}T{qv ¥}

R3. {»}T{q}
R4. ¢=0(qV En(E))
p=>Cq




The difference between this rule and its c.version is in the fourth premise. While C4 requires that
¥ entails the occurience of ¢ or the enabling of £ now, R4 requires the eren!ual occurrence of q
or enabling of £. Here. an occurrence of p not followed by a q. leads, as before, to v holding

continuously, and no transition of T being taken. However, the weaker premise R4 guarantces

that £ is enabled infinitely many times, which suffices to violate the recurrent fairness requirement -

(E.T).

In view of the fact that premise R4 appears to be of the same form as the conclusion, i.e., another
response formula, one may wonder whether we may not enter a circular loop, trying to prove vne’
response property by another. The answer to this problem is that when we prove premise R4, we
actually consider a simpler program, in which none of the transitions of E is ever used. This is

because the first time a transition of E can be taken, we have already achieved the goal of a state;
on which E is enabled. :

Rules for Extended Response

These rules combine single-step response properties to form general response properties, which need” |

more than a single helpful transition for their achievement.

First, we list two basic rules, which express the monotonicity and txansmvnty of response prop-:

erties. They properly belong to the general part.

R-MON p=>gq, r=-t R-TRNS p=>0q
q=-0r q=or
p=-Ot p=-0r

The most important rule for establishing extended response properties is based on well- founded

induction.

We say that the binary relation > over the set A (often presented as the pair (A, »)) is well-: ,

founded, if there does not exist an infinite sequence ao, a1, ..., where a; € A, such that ¢; > a;4, for!
alli=0,1,. '

For the relation >, we denote by < its inverse relation, i.e.,
a<b << by a
and by =< the reflexive extension

axXb <& (a=<b)or(a="b).

Assume a well-founded relation (A,>), and a partia! ranking function § : © — A, mapping

states into the domain A. We denote the fact that § is defined by § € A. The following rule uses

well-founded induction to establish an extended response property.

WELL-RESP WI1. p=-(qV ) l
: W2. p==(6€ A)
W3 [pA(§=0)] = OlgV(¥A(§<a))
p=-0¢q
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Premise W1 ensures that p entails that either g already holds, or v is established. Premise W2
ensures that 8 is defived as long as ¢ holds. Premise W3 guarantees that if v holds with a certain
rank a, then eventually we will reach a state, in which cither ¢ holds, or v is maintained but

with a rank lower than a. Since a well-founded ranking cannot go on decreasing forever. we must
eventually reach a g-state.

The adequacy of this set of rules for proving response properties is established in Theorem 7.3 ,

presented in Section 7, which states: i

The rules given above are complete, relative to assertional validity, for proving the P-
validity of any response property.

8- e e, 7

o

6 Rules for Progress

In this section we deal with progress properties, which are the properties that can be expressed by
a formula of the form :

oop V o0y,

for some past formulae p and q. There are several alternative forms in which every progress property
can be recast. They are given by

[

00p — 00g, or OOp=-04.
We prefer to work with an extended form of the last formula;

(pAOOT)=~0g.

This formula states that any occurrence of p, that is followed by infinitely many occurrences of r,i
must eventually be followed by an occurrence of q. ‘ ;

Progress under Continual Fairness

If we work only under the assumption of continual fairness, that is, the family of recurrent fairness o

requirements happens to be empty, then we can base the proof of progress properties on some t‘; '
response properties and a well-founded argument. This is given by the c-PrROG rule. '

c-proG Cl. p=-(qV¥)
C2. ¢=-(6 € A)
C3. [pA(d=0a)] = [(¢?A(6=2a)Uq]
Ci. [rA@A(S=q)] = olgV (5 < a)]
(PADOT)=~0g

Note that this rule uses the Unless operator U.

Premise C1 of the rule ensures that any position that satisfies p, either already satisfies q- or;"
satisfies ¢. Premise C2 ensures that 6 is defined as long as ¥ holds. Premise C3 ensures that.t
starting at a position satisfying ¥ and having a defined rank a, ¢ is continuously maintained and 5
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the rank never increases above o until ¢ occurs. if ever. Premise C4 indicates that an additional
occurrence of r strengthens the non-increase. guaranteed by ('3, into a gnaranteed eventual decrease.

Thus, if there are inhinitely many occurrences of » then, either § decreases infinitely often. which is

impossible due to well-foundedness, or ¢ is eventually realized.

The adequacy of this rule is stated by Corollary 7.1, presented in Section 7, which claims:

For a program with no recurrent fairness requirements, the c-PROG rule is complete.
relative to assertional validity, for proving the P-validity of any progress property.

Obviously, a progress property (p A OOT)=>Ogq can be valid over a program due to the fact
that the simpler response property p=-q is valid. The theorem above depends on a particular
mechanism to guarantee that infinitely many occurrences of r cause the eventua! occurrence of gq.
This mechanism is based on a ranking function, measuring the distance away from the realization
of ¢, such that each occurrence of an extra r causes an eventual decrease in the rank.

Progress under Recurrent Fairness

T A A NI e\ S 4wt s

When we have recurrent fairness requirements, a well-founded decrease is not the only mechanism !

by which infinitely many occurrences of r can cause the computation to progress from p to q.
Another possible mechanism is based upon a recurrent fairness requirement (E,T) € R, such that |
each transition in T leads from p to ¢, and each occurrence of r causes E to eventually become

enabled (at least once). Consequently, the rule c-PROG is no longer adequate.

To cover the case of recurrent fairness, we present first a single-step rule for progress under !
recurrent fairness. The rule concerns a recurrent fairness requirement (E, T) € R, and past formulae !

pnq, and ¥.

R-PROG Rl. p=-(qV¥)
R2. {¢}T{qV ¥}
R3. {¥}T{q}
R4. [@ADO(PAT) = O(qV En(E))
(pAOOT)=~0g

This rule establishes a single-siep progress, under the assumption of the recurrent [airness re- | -
quirement (E,T) € R. Several single-step progress pruperties can be combined, using the properties ©
of monotonicity and transitivity of the progress formula. Below we present two rules, properly be- ! P

longing to the general part, for these two properties.

P-MON p=>p . r'a>r, q=¢ P-TRNS (pAQOT)=-0Og
(pADOT)==0q ' (g A OOT) =0t
(¥ Aoor)=0oq’ (pAOOT) =0t

Finally, we have a well-founded rule for combining together progress properties using induction. |
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WELL-rrOG W], p=-(qV y)
W2 p=>(6 € A)
W3, [PA(E=0a)A0or]==0lgV (£ A (S < a)))

[pA DOT|=-0q

This more general case is summarized by Theorem 7.4 presented in Section 7.

The rules given above are complete, relative to assertional validity, for proving the P-
validity of any progress property.

7 Completeness of the System

In this section we sketch the general ideas that lead to the (relative) completeness of the rules !
presented earlier. Since the most innovative part of the proof system presented in this paper is the ©
incorporation of past formulae, we structure the completeness proof into two major steps, the first :
of which is the elimination of the past. The second step is left to deal with the restricted case of
safety. response, and progress properties, where the subformulae p and q are only state formulae. *

Encoding Past Formulae

We define a temporal formula as stratified if it contains no future operator within the scope of a

past operator. Obviously, all formulae in canonical form are stratified, because they never apply '
past operators to strict-future formulae. i

Let us fix our attention on a program P and a stratified formula ¥, whose validity over P we
wish to establish.

Define @ to be the set of subformulae of ¥ (possibly including ¢) whose principal operator is a g
past operator, i.e., O or S. We define a set of new boolean variables B consisting of a variable b, *

for each formula p € 9. We intend to use the variable &, to encode p, i.e., as a variable that will be g ]
true at a position in a computation iff the formula p is true there.

Let g be a subformula of ¥, and p a subformula of q. We define p to be ®-mazimal in q if

eped and h

e there is no r, another subformula of ¢, such that r € ¢ and p is a proper subformula of r, i.e.,
strictly contained in'r.

) Let py,...,p¥ be all the #-maximal subformulae of q. We define the statification (i.e., encoding
of past formulae as state formulae) of g, denoted by stat(q) (or g,), to be

stat(q) : qlbpy/Pryeres bpn/Pul-

That is, stat(q) is obtained from q by replacing all occurrences of the subformula p; by the variable b

bp,, fori = 1.....n. It is not difficult to see that, in the special case that q is a past formula, staf(q)}
is a state formula.

L S

16




Replacing past formulae by boolean variables is obviouslv not enough. unless we can guarantee
that in all positions of the computation the variable by assumes the same truth value as po To
achieve this we modify the program P. given by the system (1, L.T.0.C.R), to obtain its stat:fied

version P,, given by (V, E,T(—),CR), where we define:

o V =V UB. That is, we augment V' by the new boolean variables in B.
«¥-

The set of interpretations over V. Variables in B should be assigned boolean values.

o« T - Corresponding to each + € T, we place in 7 a transition #, whose transition relation is -
given by g, = p, A N. The assertion N(V,V"’) controls the evolution of the variables in B
between each state and its successor, and ensures that it corresponds to the evolution of the
past formulae they stand for. The assertion N is a conjunction containing a conjunct C(p)

for each p € ®. These conjuncts are given by:

« C(Op) : b’@p = stat(p). . & K

This conjunct guarantees that the boolean value of b@p in the next state equals the
truth-value of stat(p) in the current state. ‘
« C(pSyq) : b’qu = [(stat(q))'V (b, s, A (stat(p)))].
This conjunct guarantees that b, s, is true in the next state iff either stat(q) holds there, .
or stat(p) holds there and b,s, holds now. "

® O : OAInit. The assertion Init ensures that the initial value of each variable b, € B matches : £
the initial value of the past formula p. The assertion I'nit contains a conjunct I(p) for each © . }

p € 9, given by: a
« I(Op) : —ab@p_

This conjunct states that all previous formulae are initially false.

« I(pSq) : bqu = stat(q). :
This conjunct states that the only way for pSq to hold at the first state in a computation |

is for stat(q) to hold there.

The structure of the fairness families ¢ and R is identical to that of C and R, except for the
trivial renaming of each 7 to 7. =

Example 7.1 Consider the simple program, presented in Example 4 above, which was given by {
V={z},7T = {7}, where p, : ' = 2+ 1, and O : z = 0. The formula considered there is :

?: 0((z =10) = o(z = 5)).
Clearly, for this case & = {©(z = 5)}, yielding a single boolean variable b, corresponding
to the past formula ¢ (z = 5), which is an abbreviation for TS(z = 5). Consequently, we have -

stat(¥) : O((x = 10) — b), and the statified program P, is given by:

o V= {z, b}.

o T = {#}, where (following some simplifications) g, : (' =z +1) A (V' = [(' = 5) V b)).
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¢ 0 r=0A(h= {r = 3)). which is equivalent to (r = 0) A —b. a
Theorem 7.1 (Past Elimination) ¥

o The formula ¢ is valid over P iff ¥, = stat(y) is valid over P,.

L L L DA

o Any proof of P, & ¢,, using the proof system presented in this paper,
can be cffectively transformed to a proof of P+ .

R B Nt L

Proof: The first statement of the theorem follows from the fact that there is a one-to-one corre- :
spondence between computations of P and computations of P,, such that for every o, a computation ; ’
of P, and &, the corresponding computation of P,, position 7, and past formula pE &: \

(@i)Ep <= (6.5 E(b=T).

This fact can be proved by induction on j =0, 1, ... and structural induction on ped.

The second statement of the theorem is proven by showing that, replacing each line F «* in the § ‘
proof of P, I ¥, by the line - stat~'(1)), we obtain a sound proof of P F ¢. The transformation:

stat=1(y) replaces each occurrence of b, in ¥ by the past formula p, each occurrence of ), by p',:- -

and each occurrence of © and g, by © and p,, respectively.

A detailed proof of this fact considers the different justifications for the line I %, and shows the
corresponding justifications for F stat=1(3). ]

An illustrative case in point is a proof line stating the validity of the verification condition®

{T}v"{bPSq}, for the simple case that p and g are state formulze, and that the line is justified byi

generalization of a valid state formula.

This leads to the proof line

Q’

which can be written as

Folor A (b5, =g Vb5, AP = b s,

which is equivalent to

Fopr =o' V(b,5,AP)
Since p, does not refer to bp S this line can be valid only if p, — ¢’ is a valid state formula.ii’;
Applying stat™! to g, =¥’ S.» We obtain

»Oq
F p-=-(pSq),
which expands to
ko =g V(PSO AP

Clearly, the validity of p, — ¢/, claimed above, can be used to justify this line.

A small technical problem is that a naive substitution of a past formula p for the variable l),,fjf;
may result in formulae that are not allowed in our syntax. A case in point is a state l'ormulag
a(bp), in which the variable b, falls in the scope of a quantification (on some other variable). Our; -
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syntax dees not allow quantification over temporal formulae that are not state formmlac. To resolve
this problem. we observe that the state formula a(b,) is equivalent, in all contexts, to the formmla
(b Aa(T)) V (—by A (F)), in which the occurrences of b, are outside any scopes of quantifications
performed in a. Substitution in this latter form will result in a formula that is allowed by our
syntax. -

We should emphasize that the systematic climination of the past from formulae an” proofs,
which facilitates establishing the completeness of the proof system, is not necessarily the approach
we recommend for the actual verification of concrete programs. On the contrary; we strongly -
recommend working directly with past formulae which explicitly represent the relevant facts about
the history of the computation leading to the current state. For example, we find the invariznt |
O((z = 10) = ©(z = 5)) much more appealing and explicit than the encoded version o((r = ¢
10) — b), accompanied by the tacit understanding that b = T iff we have passed in the past through : 1
a state in which z = 5. P

Having shown how the past can be systematically eliminated, and replaced by state formulae. it
only remains to show that the rules given above are adequate for proving the validity of the three '
classes of formulae: "
op p==0q (r A OOT) =04,

for the restricted case that p, g, and r are state formulae. These cases are more familiar, and the '

completeness of similar rules, for the cases of the safety and response classes, has been previously ‘
discussed in several places, such as [LPS81], [GFMdRS5], [FraS6}, [AS$9], and [MPS7].

Safety

Since we have restricted our attention to state formulae, it is sufficient to show that, whenever 0g
is valid over the program P, we can prove this fact, using the INV rule. Premise I3 is proven by !
showing that (p, A ¥) — ¢’ is a valid state formula for every 7 € 7.

Theorem 7.2 (Completeness of Safety) The rule INV is complete, relative to assertional valid- ]
ity, for proving the validity of safety formulae of the form Qq, where q is a state formula. -

Proof: The basic idea of the proof is the construction of an assertion X that holds in a state s 3
iff s is accessible, i.e., appears in some computation of P. We then show semantically that, if Og is*
indeed valid over P, then the premises of the NV rule are valid when taking \ for ¢. 1

We assume that our data domain is expressive enough to encode records (i.e., lists) of data’
clements, and lists of records. In the definition of the assertion, we freely use the auxiliary \anable
r ranging over records, and a variable A ranging over lists of records. We are mainly interested in
records r of size |V|, and often write r = V to denote that the record r contains a list of elements
equal to the current values of the state variables V. We use the subscripted expression Afi} to refcr
to the i-th element of A, and the expression last()) to refer to the last element of A. For an a.ssettlon‘ '
¥(1), referring to the state variables V, and a record r of size equal to that of V, we denote by (r)! _
the assertion ¥ in which the value r[i] is substituted for the state variable u; € V, for i = 1,...,|V].}

e, s

The assertion X is given by: :
x(V): 3 (Al>0)AaAdAq). o

The body of the assertion X (to which we refer as (1" X)) consists, in addition to the requiremom{
that A is non-empty, of three clauses, given by: -
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The assertion X states the existence of a list of records A of length n = |A\| > 0. The list \

encodes the history of a computation from some initial state to the current state. Each elemont i

Alf], i = 1....,n, is a record of data elements, representing the values of the state variables V at t}; e

i-th state of the computation. ’*
Clause a states that A[1] satisfies O, the initial assertion of the program. :: i |

Clause 3 states that the current state variables V equal last(\) = A[n], the last record in X.

Clause 7 states that the (i + 1)-st record of A, for each i = 1,...,n = 1, is a T-successor of thet - %
i-th record, for some transition 7, guaranteeing the correct succession from A[1] to Afn]. -

We will show now that X, when substituted for ¢, validates the three premises of the INV rule,

1. - x -
It is not difficult to see that taking A to be (V), i.e., the list consisting of the single record
containing the current values of uy, ..., ujv, the assertion ©(V) implies the body ¥(V, ).

I2. x> ¢ 4
By our assumption that Og is valid over P, it follows that each accessible state satisfies q. :

Since X characterizes precisely the accessible states, the premise follows.

3. [p-(V,V') A 3N Q(V,0)] = 3N 9(V', N), foreach T € T
It is not too difficult to see that if V, V', and A satisfy p,.(V, V') A U(V, ), then there exists a:
A" which satisfies ¥(V’, X’). An appropriate choice is =

N A (v,

i.e., the list obtained by appending to the end of A an additional record, consisting of the list
of the values of the primed variables V". 3

Since we are interested in showing completeness, relative to assertional validity, it is sufﬁcmnt;@j‘;‘ :
to show that the premises are assertionally valid, as we have done above. P

Response

As a complete rule for establishing response properties of the form p=>~¢q, for the restricted:}"i_v
case that p and q are state formula, we propose the following r-rESP rule, which is an appropriate: c
combinaticn of the WELL-RESP, C-RESP, and R-RESP rules. As usual, the rule stipulates the exxstence‘: .
of an auxiliary assertion ¥, a well-founded relation (.A4,>), and a partial ranking function § : £ — A, -
mapping states into the domain A.

Since we intend to combine together continual and recurrent fairness, it is helpful to form the
union of the continual and recurrent fairness requirements into one set of fairness reqmre'nem\: '

F=CUR.
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F-RESP Fl. p=-(yvy)
2. v=(f e

F3. {ra(8=a)} T {qVv (¢ A(62a)))

For each a € A, there exists a fairness rcqtiiremont. Fy =(E,,T,) € F, such that

Fi. {pA(b=a)} Ta {gV (P A(6<a)))

If F, €C, then

C5. [PA(6=a)] == (gV En(E,)) '

RS. F—{F,}F
[AB=a)l = olgVv(pA(8<a) vEn(E)]
p=0q

a2 T o

e 3o

This rule combines well-foundedness with single-step rules. For each parameter a € A, the rule
requires the identification of a fairness requirement (E,, T, ), that can be either a continual fairness
or a recurrent fairness requirement. In both cases, it is required (by premise F4) that any transition
in T, leads from each ¢-state s with rank o to a state ', that either satisfies g, or satisfies ¢ with a
rank strictly lower than a. Any transition not in T, is required (by premise F3) to lead from each

¥-state with rank a to a state s', that either satisfies g, or satisfies ¥ with a rank not higher than
a.

-

For the case that (E,,T,) is a continual fairness requirement, premise C5 requires that each !

p-state with rank a, either satisfies ¢, or enables E,. For the case that (Eo,To) is a recurrent i -

fairness requirement, premise R3 requires that each ¥-state s with rank « is eventually followed by ;

a state s’, that either satisfies g, or satisfies ¥ with a rank lower than a, or enables E,. To avoid -
circularity, premise R5 is to be proven for a simpler program, in which F, = (E,,T,) is removed ’ .

from the list of fairness requirements. This is feasible because when trying to achieve a state in |
which E, is enabled, we cannot be helped by any transition of E,, since its activation from a siate ?
s’ implies that E,, is already enabled on s'. ‘

The following lemma establishes a connection between an arbitrary well-founded relation and a
well-founded ranking. Such a ranking is required for the rule F-REsP.

s

Lemma 7.1 Let B be a well-founded relation over the set S. Then there erists a total ranking®

function § : $ +— Ordinals, mapping each element of S into some ordinal, such that:
a. sBs' — §(s) > §(s').

b. If s'Bs" — sBs" for every s” € S, then §(s) > 6(s’).

Based on this lemma, we can now state and prove the main completeness theorem.

Theorem 7.3 (Completeness for Response) The rule F-RESP is complete, relative to asser- ‘
tional validity, for proving the validity of response formulae of the form p=><0q. where p and q are D '

state formulae.

If F, € R, then '

T A

s
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Proof:  Awume the formmla P==0q to be valid over the program P. We ave to show the

—

¢ ki

existence of an appropriate assertion ¥, a well-founded ordering (A, >). a ranking function & 1 £

A, and a selection function, ilentitying for cach a € A a fairness requirement F, = (£,.T,) =
F. such that together they satisfv the premises of the F-rEsp rule. Due to the incremental

principle, it is sufficient to show for each premise ¢, the validity of X — v, where Y is the assertion

ity -

characterizing accessibility, and whose invariance over P has been established by the preceding

theorem.

We define a (computation) segment to be a finite sequence of states o : sy, s,, vy Sk, for k> 1, o
such that for every i = Lok =1, 8;41 is a T-successor of si, forsomer € T. We say that the:
segment o departs from s,, and that it connects 51 to s¢. We define a segment to be g-freeif none of

the states sy, ..., s, satisfies . From now on, when we refer to a segment, we mean a g-free segment.
We define the assertion @ required by the F-RESP rule as foliows.

sEE® <= There exists an accessible p-state § and a g-free segment,
connecting $ to s.

This definition is verbal, but it is clear how it can be expressed in our assertion language, using :

techniques similar to the ones used for defining X in the theorem about safety.

It is clear that if the state s satisfies ¥, and scme computation contains s at position j, then,
due to the assumed validity of p=Cq there must be a later position k > j satisfying q.

It is also obvious that ¥, defined in this way, satisfies premise F1 of the rule, i.e., p=(qV¥). '
This is because, if s is an accessible p-state which does not satisfy ¢, then we can take § = s and the ;

singletcn segment s, connecting s to itself, as a justification for the claim that s satisfies . We can

restrict our considerations here and elsewhere to accessible states only due to the incrementality
principle.

Let the family of combined fairness requirements F consists of the sets R,..., F,,, where each
F; is either a continual fairness requirement or « recurrent fairness requirement. Without loss of
generality, assume that F = (7,7 ) is a continual fairness requirement, consisting of a pair of sets,
each being the full set of transitions 7. For a segment o : 8y,...,5¢ and a fairness requirement
F, € F, wesay that F, = (E:i,T;) is fulfilled in o if one of the following holds

e Some transition of T} is taken in o.

e F;is a continual fairness requirement, and E; is disabled on some state in o.

For a segment o, we define sat(c) to be the set of all indices i = 1,...,m such that F; is fulfilled i

in 0. Let @ denote the set of all states satisfying . We define a binary relation B on & by:

$B3 <= There exists a g-free segment o connecting s to §, such that sat(c) =
{1,...,m}.

We claim that B is a well-founded relation over . This is because an infinjte sequence
s'Bs?Bs°...,

gives rise to a computation

i

)
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such that ¢

foanttiall S satisfies poand no state bevond & <aticfies ¢. Snch a computation obvion-dyv
vielates our assumiption that pzi=2q is valid over . The fact that the sequence above is a cans
putation, in particular that it satisfies all the fairness requirements, hinges on the assumption that

the satishability set of ecach segment ', s'** is the full set {1,....m}.

Arcording to Lemma 7.1, there exists a ranking function & : ¢ — Ordinals, mapping states in
® into the ordinals.

Let s be a ¥-state and &' a wucccqqor of s. If &' does not satisfy q, then it is also a ¥-state. In .
this case we show that &(s) > &(s'). This inequality is ensured by clause b of Lemma 7.1, provided -
we show that for every s”, s’Bs” implies s Bs". :

Indeed, let s” be a state such that s'Bs". By the definition there exists a segment ¢’ : ;
connecting s’ to s”, such that sat(¢’) = {1,...,m}. It is obwous that the segme- . o : s, .s', ..... ",
formed by appending s to the begmnmg of s', connects s to s”, and that sat(s) = {1,...,m}. This

establishes s Bs”. ; :

The ranking &, is not fine enough to uniquely identify the fairness set F,. We therefore augment
it by a secondary ranking é, defined as follows.

For a segment o, we define the deficit of ¢, denoted by A(o), to be the smallest positive mto«er
¢, such that F; is not fulfilled in o. In the case that sat(c) = {1,...,m}, A(c) is defined to be m + 1. !
We define a segment o : sy, ..., sk to be leveled if éo(s;) = ... = 60(31,.).

For every -state s, we define its secondary ranking 6;(s) by
§i(s) = maz{A(c) | is a leveled segment departing from s }.

The complete ranking function, to be used in the rule, is formed by the lexicographical pairing
8(s) = (60(s),61(s)). The range of the function & is defined to be A, the set of all pairs of the form :
(o, 1), where ag is an ordinal and i < m + 1.

The ordering > over A is defined by

(a0,i) = (0h,#) = (a0>ap) V (a0 = ap) A(i> "))

. Clearly, this ordering is well-founded. j

There are several properties these ranking functions satisfy.

P1. For every w-state s, &(s) < m.

Let o be a leveled segment connecting s to some s'. If sat(c) equals {1,...,m}, then sBs’ 5" ,
holds, which leads to &y(s) > 6o(s'), contradicting the fact that o is leveled. It follows that at ﬁ

least some F; is not fulfilled in &, and therefore 6,(s) < m.

P2. For every y-stuie s and its successor &', either s’ satisfies g, or §(s) > 6(s').

Assume that s’ does not satisfy g. We have already shown that 8o(s) > bo(s’). If bo(s) > .Su(s'),;f - “
then clearly 8(s) = 6(s'). In the other case, i.e., fo(s) = 8o(s’), let 8,(s') be ¢+ < m. By the .
definition of §,, there exists a leveled segment o’ : &/, ..., 8", such that i is the smallest index -

of a fairness 1equuement F;, which is not fulfilled in ¢’. Consider the augmented segment®

0:5,8,...,8" Clearly, o is leveled and any F; fulfilled in ¢’ is also fulfilled in o’. It follows®

that the deficit of o, A(e) > A(¢’) = 1. Since ¢ is only one of the leveied segments (lepamngf
from s, and 8;(s) is defined to be the maximum of the deficits of all such segments, it follows

that 61(8) >t %
1
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P3. Let s be a ¥-state. such that §;(s) = 7. Let &' be a r-successor of ~. where = is one of the
transitions of T,. Then. either s’ satisfies ¢. or £(s) = &(s).
It is sufficient to consider the case that ' does not satisfy ¢ and that du(s) = &(&'). and to -

show that 6,(s) > &(s’). Assume, to the contrary, that &(s) = §;(s') = i. Let ¢’ : &', ....s"
be, as belore the segment realizing the deficit ¢ for &'. Clearly, the augmented segment
o :s,¢,...,3" fulfills all the requirements fulfilled by ¢’, and in addition also fulfills F. It

follows thut A( ) > 1, and therefore also §,(s) > ¢, contxadxctmg our original assumptions.

We proceed to show that all the premises of the r-RESP are satisfied by these definitions. We ha\e
already shown that F1 is valid.

F2. p=>(6 € A) _
Clearly 8 and &, are defined on every w-state. It follows that § is also defined. L

For the next premises, we identify for each value & = (g, 1) € A, the kelpful fairness requnement
Fy = (E4,T,) to be F, = (E;, T;).

F3. {¢A(6=0a)} T {qV (<P/\(6-<a))}
It is straightforward to show that if s’ is a successor of a ¥-state s, then either ' satisfies q or it is’
also a ¥-state, which by property P2 above satisfies §(s) = &(s'). ¥

Fi. {pA(6=a)} T {gV (P A (6 < @)}
Let s be a p-state, such that 6;(s) = ¢, and s’ a T-successor of s, for some transition 7 € T.. If. .

s’ does not satisfy ¢, then it clearly satisfies ¥, and by the property P3 stated above. also satisfies
6(s) > 6(s'). =

For the case that F; = (E;,T;) is a continual fairness requirement, we procecd to show
Cs. [#A(6=0a)] = (qV En(E,))

Let s be a p-state, not satisfying g, such that &;(s) =i. Let 0 : s,...,s" be the segment reahzmg
the deficit <. If E; were disabled on s, then according to the (leﬁmtlon F; would have been fulﬁlled ]
in 0. We conclude that E; must be enabled on s.

s 4;»‘:»-45;‘::1-.-;5»«« e

For the case that F; = (E;, T}) is a recurrent fairness requirement, we proceed to show

RS. F—-{F.} F [¢A(§=0a)] == OlgV (P A (6§ <)) V En(E,)]

Let P’ denote the program which is identical to P in all components, except that the recurrent;
fairness requirement r; = F, has been removed from its combined fairness set F. \Ve proceed to®
show that P’ }= ¢, where ¢ is the state formula whose validity is claimed to he provable in R3 :
Assume to the contrary, that  is not valid over P’. In that case there must exists 0. a computation’
of P’, containing at some position j a ¢-state s with rank a (and 6,(s) = 1), such that no positio
beyond j satisfies q v (‘P/\ (6= al) V En(E;). Being a computation of P’ means that it satisfies all’
the fairness requirements pose.” by P, except possibly F;. However, since En(E,) = En(E;) is onel
of the disjuncts excluded beyond position j, it follows that E; is enabled only finitely many times’
on o, which implies that o is fair also with respect to F;, and is therefore also a computation of P.;
This violates our original assumption that p=~0q is valid over P.

If we base our completeness proof on induction on the size of F, the combined fairness set, we'

have just reduced the completeness problem of response properties for programs with |F f=n+1. 8§

to that of program with |F| = n. By such an induction, since we have just shown that [ |= v, it’
follows that P’ F 1, as is required by R5.
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Note that the reduction implied by premise RS alwavs removes from F a rccurrent foirness
requirement. This implies that after any number of such removals F will still contain the continual
fairness requircment (7,7 ), and therefore | F| > 1.

It follows that the base case for the induction can be |F| = n = 1. In this case, the only helpful
requirement can be (7,7). The arguments above are fully applicable for this case, except that the -
case leading to RS never arises, since the helpful requirement is always a continual requirement. 4

Progress

Lastly, we consider proving the completeness of our proof system for proving formulae of the form _
(PAGOT) =g, for state formulae p, ¢, and r. A helpful intuition, which will guide us in the proof, :
is that such a formula is valid over P iff the response formula p==Oq is valid over a program P+ :
which differs from P by having an additional continual fairness requirement, which demands that g

every computation contains infinitely many r-states. ;
With this understanding, we proceed in a route very similar to that of establishing completeness :
for response properties. We consider first the general case of a program that has both contmual

and recurrent fairness requirements.

R

As a first step, we formulate a combined rule for progress, using a notation similar to that of the
F-RESP rule, with some small changes. We define the combined fairness set F, = {(¢,Tp)}UCUR. ; 1
Thus, the set F, contains, in addition to the continual fairness requirements taken from- C, and
the recurrent fairness requirements taken from R, also the special “fairness” requirement (¢, 7p). ¢
This virtual fairness requirement contains no transitions in its E set, but restricts our attention (as
may be seen from the rule) to computations, in which r occurs infinitely many times. We represent
the requirements contained in F, by the list Fy, Fy, ..., F, where F, ..., Fy are the real falrness
requirements, and Fy = (¢, Tp) is the virtual one. Following is the comblned rule for progress.

L T st

F-PROG Fl. p=(qgVv¥)
F2. p=-(6€ A)
F3. {¢A(6=a)} T {qV (pA(6=a)))
For each a € A, there exists a fairness requirement F, = (Ea,Ty) € Fy, such that:
If Fy #(¢,7p), then
F4. {¢A(6=0)} Tu {gV (PA(6<a))}
If Fy =(4,7p), then '
F5. {#A(6=a)Ar} T {gV (vA(6<0)))
If Fy €C, then
C6. [pA(6=a)] = (¢V En(E )
If F, € R, then
R6. F, - {F,}F v
[ A(8=a)AOor] = gV (9 A(5<a)) v En(E,)]
(PADOT) = O

Theorem 7.4 (Completeness for Progress) The rule F-PROG is complete, relative to asser-t |
tional validity, for proving the validity of progress formulae of the form (p A OOT)=>0q, where
p, v, and q are state formulae.
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Proof:  Assume the formula (p A BOr)=-0q to be valid over the program P. We adopt the
definitions of ¢, and g-free segments. from Theorem 7.3, We slightly modify the definition of
fulfillment in a segment to read as follows:

For a segment o : s,,...,s, and a fairness requirement F; = (E;,T;) € F,. we say that I is

fulfilled in o if one of the following holds:

® 1 > 0 and some transition of T; is taken in o.
e : >0, F; is a continual fairness requirement, and E; is disabled on some state in o.

¢ : = 0 and some state in ¢ satisfies r.

dnea

Thus, we associate the fulfillment of the set Fo = (4, Tp) with the satisfaction of r. We define the
set sat(7), for a segment o, as before, except that its range may now be any subset of {0,1,....m}.
Similarly, we define the relation B to hold between two states, s and o', if there exists a segment
o, connecting them, such that sat(o) = {0,1,...,m}. The relation B is well-founded, because ;
an infinite sequence of B-related ¢-states gives rise to a computation violating (p A BOT) =~0q.
Consequently, we obtain the primary ranking do. The definition of the deficit A(c) of a segment o
is precisely the same as the corresponding definition in Theorem 7.3, except that it now ranges over :
{0,1,...,m}. This leads to the secondary ranking 6;, and to the definition of the combined ranking ;|
6 = (60, 6,), which ranges over pairs (ao, ), with ap an ordinal, and 0 < i < m. ]

< g s

o SR gt st

It is straightforward to verify that properties P1 and P2 are still valid, as is P3 for 6(s)=i>0. ;

A special consequence of the definitions above is that if s is a y-state, which satisfies r, then | .

61 (8) > 0.

We may now turn to establish the validity of the premises of the rule. Premises F1, F2, and F3, ]
follow from arguments similar to the ones presented in the case of the response rule.

Given a parameter a = (ao,i), we ‘identify the helpful fairness requirement F, as F; € .. .

Premise F4, which is applicable only in'the case that i > 0, is justified by arguments similar to &
those of the response case. So are premises C6 and R6, which are also applicable only to the cases i

t > 0. Considering R6, the inductive argument has to consider a similar progress property for a
simpler program. ' :

Premise F5 holds trivially, since by the observation above, there can be no ¢-state s, satisfying :
r, such that i = §;(s) = 0. ai

Using the constructions employed in the pm6f of this theorem, it is possible to derive the
following corollary. ' '

Corollary 7.1 (Completeness of Progress under Continual Fairness) For a program with 1
no recurrent fairness requirements, the c-pPrOG rule is complete, relative to assertional validity, for
proving the P-validity of any progress property. ' '

Proof: Assume the formula p=><q to be valid over the program P, which has only continual {

fairness requirements. We adopt the definitions of the assertion ¥, the ordering B, shown to he .
well-founded, and the ranking function 6, based on B, from the previous theorem. We take &, for ¢ . ;

the ranking § required by the c-ProG rule. It is not difficult to see that this choice of ¢ and §
satisfies premises C1-C3 of the rule. Let us consider premise C4. Assume a computation, in which |
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~ the state & at position j satisfies r A ¥, and has the rank 5(s) = a. It is not difficult to see that
there must be another state 3, at position k£ > j, such that either § satisfies ¢, or the segment s....&
is g-free and fulfills all the (continual) fairness requirements associated with P. In the later case
sBs (since s satisfies ¥), and according to clause a of Lemma 7.1, this implies that §o(s) > &o(3).
This establishes premise C4. <
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